Stoichiometry Practice

_1. How many moles of ammonia, NH_3 , will react with 20.0 moles of oxygen, O_2 ?

(A) 10.0	(D)24.0
(B) 16.0	(E) 25.0
(C) 20.0	

2. The mass of 1	.00 mole of $(NH_4)_2CO_3$ is
(A)43.0 g	(D)78.0 g
(B) 53.0 g	(E) 96.0 g
(C) 72.0 g	

_3. There are two known chlorides of copper.

	Sample	Copper	Chlorine
I	9.90 g	6.35 g	3.55
II	13.45 g	6.35 g	7.10

What is the empirical formulas of these two compounds?

 $\begin{array}{ll} \text{(A)} \text{CuCl}, \text{CuCl}_2 & \text{(D)} \text{CuCl}_2, \text{Cu}_2 \text{Cl} \\ \text{(B)} \text{CuCl}_2, \text{CuCl} & \text{(E)} \text{Cu}_2 \text{Cl}, \text{CuCl} \\ \text{(C)} \text{CuCl}, \text{Cu}_2 \text{Cl} & \end{array}$

_4. What is the percentage composition, by mass, for calcium carbonate, CaCO₃?

		Calcium	Carbon	Oxygen	
	I	38	40	22	
	II	40	12	48	
	Ш	45	15	40	
	IV	50	10	40	
(A	I((D) IV		
(B)) II		(E) Non	e of the ab	ove.
(C) III				

__5.Mg reacts with aqueous silver nitrate to produce 2.16 grams of silver metal in an experiment. What is the mass of magnesium reacted?

 $Mg + 2 AgNO_3 \rightarrow 2 Ag + Mg(NO$

(A)0.242 g	(D) 1.30 g
(B) 0.325 g	(E) 2.16 g
(C) 0.650 g	

 $_{3})_{2}$

_____6. 1.00 g of H₂(g) at STP occupies (A) 0.50 L (D) 11.2 L (B) 1.00 L (E) 22.4 L (C) 2.00 L

____7. The mass ratio of hydrogen to oxygen in water is

(A)1:8	(D)2:1
(B) 1:4	(E) 8:1
(C) 1:2	

$\underbrace{ \begin{array}{c} \underline{ 8. An analysis of a \\ Percer} \\ \hline \\ \hline \\ \underline{ Carbon & H} \\ \underline{ 40\% & } \\ \hline \\$	a compound is performed. htage by mass Hydrogen Oxygen 6.7% 53.3% ula of the compound is (D) C ₂ HO ₂ (E) C ₄ HO ₃	12. An empty flask (vacuum) has a mass of 110.02 g. Filled with $H_2(g)$ the flask has a mass of 110.06 g. Filled with an unknown gas the flask has a mass of 110.66 g. All massing is done at the same temperature and pressure. What is a possible formula for the unknown gas?(A) F_2 (D) H_2O (B) O_2 (E) CO(C) He
9. How many mol mole of N ₂ at STP? (A) 1.2×10^{23} (B) 2.0×10^{23} (C) 2.4×10^{23}	ecules are contained in 0.20 (D) 3.0×10^{23} (E) 6.0×10^{23}	13. The number of molecules of $O_2(g)$ in 1.00 L of the gas at STP is (A) 6.02×10^{23} 32.0 (B) 6.02×10^{23} 22.4 (C) 6.02×10^{23} 16 (D) 6.02×10^{23}
10. The percentage	, by mass, of nitrogen in	(E) $6.02 \times 10^{23} \times 22.4$
$(NH_4)_3PO_4$ is (A) 9.40% (B) 12.4% (C) 28.2%	(D) 36.2% (E) 37.6%	14. What is the molar mass of a gas with a density at STP of $1.34 \text{ g} \cdot \text{L}^{-1}$? (A) 22.4 g (D) 59.8 g (B) 24.4 g (E) 0.598 g
$\underbrace{11. Which gas has}_{(A)Cl_2}$ $(B)F_2$	the highest density? (D)CO ₂ (E) Ar	(D) 24.4 g (D) 0.578 g (C) 30.0 g
(C) NH ₃		15. Sodium chloride reacts with AgNO ₃ to produce solid silver chloride. NaCl(aq) + AgNO ₃ (aq) → AgCl(s) + NaNO
		How many moles of AgCl(s) is formed by the reaction of 0.60 mole of NaCl with 0.40 mole of AgNO ₃ ? (A) 1.0 mol (D) 0.60 mol (B) 0.20 mol (E) 0.80 mol (C) 0.40 mol

16. When 1.0 mole of potassium chlorate, KClO $_3$, decomposes the number of moles of O ₂ produced is		19. The percentage composition of a compound containing 30. g of carbon and 10. g of hydrogen is (A) 10 % C and 30 % H (D) 75% C and 25% H		
2 K	$ClO_3 \rightarrow 2 KCl + 3 O_2$	(A) $10.\%$ C and $50.\%$	D = (D) / 5% C and 25% H	
	5 ' 2	(b) 25% C and 10%	н (E) 80% C and 20% н	
(A) 1.0.	(D) 1.5.	(C) 50.% C and 10.%	Π	
(B) 2.0.	(E) 4.5.			
(C) 3.0.				
$\begin{array}{c}17. \text{ What mass of } \\ _{3}, \text{ is required to CaO?} \\ & CaCC \\ (A) \frac{56}{100} \times 168 \text{ M} \\ (B) \frac{100}{168} \times 56 \text{ kg} \\ (C) \frac{1}{1} \times 168 \text{ kg} \\ (D) \frac{100}{56} \times 168 \text{ kg} \\ (E) \frac{168}{56} \times 56 \text{ kg} \\ \end{array}$	of calcium carbonate,CaCO produce 168 kg of quicklime, $P_3(s) \rightarrow CaO(s) + CO_2(g)$ sg	20. The number of molecules of O_2 in 1.0 L 2 at STP is (A) 6.02×10^{23} (B) $\frac{6.02 \times 10^{23}}{16.0}$ (C) $\frac{6.02 \times 10^{23}}{32.0}$ (D) $\frac{6.02 \times 10^{23}}{22.4}$ (E) $6.02 \times 10^{23} \times 32.0$ 21. A compound was found to contain 80% carbon by mass, and 20% hydrogen by mass The empirical formula of this compound is (A) CH ₂ (D) C ₃ H ₂ (B) CH ₃ (E) C ₄ H		
 18. What is the in propanol, C₃I (A) 5.9% (B) 11.7% (C) 13.3% 	percentage by mass of hydrogen $H_7OH (MM = 60.0)?$ (D) 26.6% (E) 66.7%	22. The molecular for is C_4H_{10} . The empiric compound would be (A) C_2H_5 (B) CH_2 (C) C_3H_7	rmula of a given compound cal formula of the same $(D)C_4H_{10}$ $(E)C_5H_2$	
		23. A 7.00 g sample of L at STP. The molar (A) 1.25 (B) 1.75 (C) 28.0	of an ideal as occupies 5.60 mass in grams of this gas is (D) 39.2 (E) 157	

24. The mole is (A) grams of carbon (B) liter of case at STD		28. A 6.2 g sample of a compound is composed of 4.6 g sodium, Na, and 1.6 g oxygen, O. The empirical formula of the compound is		
(B) liters of gas at STP		$(\Lambda)N_{2}O$	$(\mathbf{D})\mathbf{N}_{2}\mathbf{O}$	
(C) a number of p	arucies	(\mathbf{R}) NaO	$(\mathbf{D})\mathbf{N}a_{2}\mathbf{O}_{2}$ (E) Na O	
(D) grams of nucl	eons	$(\mathbf{D}) \operatorname{NaO}_2$	(E) $\operatorname{Na}_4 \operatorname{O}_2$	
(L) grains of nucl		(C) Na ₂ O		
25. What volume	of $CO_2(g)$ measured at STP is	29. If two containers of	different ideal gases at	
required for the pr ₃ in the reaction.	roduction of 159 g of CaCO	the same temperature and pressure have the same number of molecules, the gases must have the same		
$CaCl_2 + CO_2(g$	$g) + H_2O \rightarrow CaCO_3 + 2HCl(aq)$	(A) molecular masses	(D) densities	
		(B) volumes	(E) effusion rates	
(A)22.4 L	(D)44.8 L	(C) masses		
(B) 32.0 L	(E) 69.9 L	(c) masses		
(C) 35.6 L				
		30. What is the mass of	a single atom of silver?	
		(A) 1.79×10^{-22} grams	(D) 5.57×10^{21} grams	
26. The empirical	Formula of a compound is CH mass is 126 gemol^{-1} What is	(B) 108 grams	(E) 6.02×10^{23} grams	
the molecular for	mula of the compound?	(C) 1.00 gram		
(A)CH _a N _a	$(D)C_{a}H_{a}N_{a}$			
$(\mathbf{R}) \mathbf{C}_{\mathbf{H}} \mathbf{N}_{\mathbf{h}}$	$(E) C_{3}H_{3}N_{6}$			
$(\mathbf{C})\mathbf{C}_{2}\mathbf{H}_{4}\mathbf{V}_{4}$		31 What volume will 1	70 g of NH (g) occurv	
$(0) 0_{3} 1_{6} 1_{6}$		at STP?		
		(A)2.24 L	(D)0.224 L	
		(B) 17.0 L	(E) 1.70 L	
27. How many gr contained in 244	ams of water, H ₂ O, are g of BaCl ₂ •2 H ₂ O?	(C) 22.4 L		
(A)18.0	(D) 36.0			
(B) 2.00	(E) 122			
(C) 15.0		32. The molar mass of ($(NH_4)_2 Cr_2 O_7$ is	
		(A) 36.0	(D)252	
		(B) 83.0	(E) 308	
		(C) 200		

33. When 100. Liters of butane, C_4H_{10} , are reacted at SP		37. How many atoms are represented in the formula Mg(OH) _{2?}		
and 25°C, how many liters of oxygen are		(A)6	(D)4	
required under the same	me conditions?	(B) 2	(E) 5	
$2 C_4 H_{10}(g) + 13 C_4$	$D_2(g) \rightarrow 8 CO_2(g) + 10 H$	(C) 3		
₂ O(l)				
(A)49.0 L	(D) 800. L	38. What is the mo	blar mass of a gas if 1.00 L, at	
(B) 319 L	(E) 1300. L	STP, has a mass of	f 4.80 g?	
(C) 650. L		(A)0.210 g	(D)48.0 g	
		(B) 4.80 g	(E) 108 g	
		(C) 10.8 g		
34. The number of me	oles in 1.41 g of Zn is			
(A) 0.0108 mole	(D)0.0432 mole			
(B) 0.0216 mole	(E) 0.0653 mole	39. How many lite	rs of carbon dioxide, CO	
(C) 0.0324 mole		$_2(g)$, at STP, will b	e formed by the complete	
		combustion of 15.0) grams of ethane, C_2H_6 ?	
		$2 C_{a} H_{c}(g)$	$+7 \Omega_{2}(\sigma) \rightarrow 4 \Omega_{2}(\sigma) + 6 H$	
35. The number of me	oles of sodium chloride,	$_{2}O(1)$	1, 0 ₂ (6) - 7 1 00 ₂ (6) 10 H	
NaCl (MM = 58.5), ii	n 8.82 g of sodium chloride			
is		(A)11.2 L	(D) 78.4 L	
(A)0.151	(D)0.383	(B) 22.4 L	(E) 89.6 L	
(B) 0.248	(E) 0.479	(C) 44.8 L		
(C) 0.303				
		40. What is the mo	blar mass of elemental sulfur.	
36. Calcium ions (Ca	²⁺) and sulfate ions (SO	$\frac{16}{16}$		
4^{2-}) form an ionic con	npound. The empirical	(A) 16 $g \cdot mol^{-1}$	(D) 16 amu	
formula of the compo	ound would be	(B) 32 g•mol ^{-1}	(E) 32 amu	
(A)CaSO ₄	$(D) Ca_2 (SO_4)_2$	(C) 64 $g \bullet mol^{-1}$		
$(B) Ca_2 SO_4$	(E) None of the above			
(C) $Ca(SO_4)_2$				
		41. The mass of 6.	02×10^{23} atoms of F ₂ is	
		(A) 1.9 g	(D) 19 g	
		(B) 3.8 g	(E) $38 g$	
		(C) 9.5 g		
		1		

42. How many mole(s)	of calcium carbonate,	46.	Element	Percent by]
$CaCO_3$, is represented t	by 50 grams of the			Mass	
	$(\mathbf{D}) 0.40$		С	37.5%	
(A) 1.0	(D) 0.40		н	12.5%	
(B) 2.0	(E) 0.50		0	50.0%	
(C) 0.20					
		What is th	ne empiric	al formula	of this compound?
42 What volume of O	owners of CTD is	(B) CH O		$(\mathbf{E})\mathbf{C}$	HO
<u>45.</u> What volume of O_2 ,	oxygen, at STP 1s	$(\mathbf{D})\mathbf{CH}_{3}\mathbf{O}$	2		₃ 110 ₄
needed to built 10 g of 1	110113011	$(C)C_2H_3C$	J		
$2 \text{ CH}_3\text{OH} + 3 \text{ C}$	$O_2 \rightarrow 2 CO_2 + 4 H_2O$				
(A) $\frac{3}{4} \times 22.4 \text{ L}$		47 If 22	1 Lofag	as at STP h	as a mass of $1/10$
$(\mathbf{D}) 4 \times 22.4 \mathbf{I}$		σ its mole	ar mass is		as a mass of 44.0
$(B)\frac{4}{3} \times 22.4 L$		(A) 1 00 a	\bullet mol ⁻¹	(D) 89	3.0 gemol^{-1}
$(C) 3 \times 22.4 I$		(R) 1.00 g	•mol ⁻¹	(D) 00 (E) 09	5.0 g^{-1101}
$(C) \underline{3} \times 22.4 L$		(B) 1.90 g	J−1	(E) 90	so g•mor
(D) $\frac{3}{1}$ × 22.4 L		(C) 44.0 g	g•mol ⁻¹		
$\frac{1}{(E) 2 \times 4 I}$					
$(E) \underline{5} \times 4 L$		19 Thom			
22.7		48. The h	101ar mass	$501C_6\Pi_5U$	1-1
		(A) 136 g	•mol	(D) IS	$93 \text{ g} \cdot \text{mol}^{-1}$
		(B) 169 g	•mol ⁻¹	(E) 29	95 g•mol ^{−1}
44. When 1.00 L of a ga	as is massed at STP, it	(C) 181 g	•mol ⁻¹		
weighs 1.25 g. The mol	ar mass of this gas is				
(A)1.25	(D) 22.4×1.25				
(B) $1.25 \div 22.4$	(E) none of the above	40 11			2.7.11.0.1
(C) 22.4 ± 1.25		49. How 1	many grar	ns of MgSC	$J_4 \bullet / H_2 O$ is
(C) 22.4 \div 1.23		equivalen	t to 12.0 g	grams of an	nyarous MgSO
		4 III all aq			
			Molar M	lass Of	
45. How many moles ar	re there in 6.72 L of O_2		MgSO₄•	7H2O	
measured at STP?			246 gem	ole-l	
(A)0.210	(D) 6.72		240 g m		
(B) 0.300	(E) 21.0	(A) 2.05		(D)36	5.9
(C) 3.00		(B) 5.85		(E) 49	9.2
		(C) 24.6			

50. How many moles represent 18.0×10^{23} r	of ammonia, NH ₃ , will nolecules of ammonia?	54. How many gran produced by burnin	ns of carbon dioxide are g 0.400 mole of butane, C
(A)0.750	(D) 6.02	$_4$ H ₁₀ , in excess oxygen?	
(B) 1.50	(E) 108		$13/0$ 4 CO \pm 5 U O
(C) 3.00		$C_4 \Pi_{10} +$	$/_2 O_2 \rightarrow 4 CO_2 + 3 H_2 O_2$
		(A)4.40 g	(D)/0.4 g
		(B) 17.6 g	(E) 88.0 g
	c ·	(C) 44.0 g	
51. What is the molar	mass of magnesium M_{α} (DO) 2		
$(\Lambda) = 50 \text{ source}^{1-1}$	$\log_3(\Gamma O_4)_2?$		
(A) 59 g•mol (D) 110 1^{-1}	(D) 238 g•mol (D) 260 1^{-1}	55. The number of t	moles of CO ₂ (carbon
(B) 119 g•mol ⁻¹	(E) $260 \text{ g} \cdot \text{mol}^{-1}$	dioxide) in 0.66 g o	f the gas is
(C) 130 g•mol ⁻¹		(A)0.015 mole	(D) 1.5 moles
		(B) 0.12 mole	(E) 2.2 moles
		(C) 0.44 mole	
52. What is the molar	mass of a gas if 2.00 L at		
273 K and 760 mmHg	pressure has a mass of		
5.60 g?			
(A) $6.27 \text{ g} \cdot \text{mol}^{-1}$	(D) 245 g•mol ⁻¹	56. The number of 1	molecules of oxygen in 1.00
(B) 24.5 $g \cdot mol^{-1}$	(E) 251 g•mol ^{-1}	L of O_2 at 760 mmH	Hg and 273°C is
(C) 62.7 $g \cdot mol^{-1}$		(A) 6.02×10^{23}	
		(B) 6.02×10^{23}	
		22.4	12
52 At standard as dit	ions 500 ml of on ideal	$(C) \frac{0.02 \times 10}{22.4} \times \frac{27}{54}$	$\frac{15}{16}$
35. At standard condit	4 g The molar mass of	(D) $6.02 \times 10^{23} \times 54$	-0 16
this gas is	4 g. The motal mass of	$\begin{array}{c c} (D) \underline{0.02 \times 10} \\ 22.4 \\ 27 \end{array}$	13
(A) 1 97 g	(D) 98 4 g	(E) 22.4×54	16
(B) 22.0 σ	$(E) 0 0220 \sigma$	$\overline{6.02 \times 10^{23}}$ $\overline{27}$	73
(C) 44.1 g	(1) 0.0220 g		
(0) 111 5			
		57 A 7 00 a sample	of a gas occupies 5 60 L at
		STP The molar ma	ss of this gas is
		(A) 5 60 \times 7 00 g	bb of this gub is
		(B) 7.00×22.4 g	
		(C) 5.60×7.00 g	
		22.4	
		(D) $22.4 \times 7.00 \text{ g}$	
		5.60	
		(E) $\frac{22.4}{5.60}$ × 5.60 g	
		7.00	

_58. Consider the reaction used in fueling t space shuttle:	the61. What is the <i>total</i> mass of products formed when 1.00 mole of methanol, CH_3OH , is completely burned?
5 N ₂ O ₄ (l) + 4 N ₂ H ₃ CH ₃ (l) →	
$12 H_2O(g) + 9 N_2(g)$	$(g) + 4 \qquad 2 \operatorname{CH}_3\operatorname{OH} + 3 \operatorname{O}_2 \to 2 \operatorname{CO}_2 + 4 \operatorname{H}_2\operatorname{O}$
$CO_2(g)$	(A) 67.2 g (D) 160. g
How many Liters of nitrogen gas at STP a produced by the oxidation of 1.00 mole of ${}_{2}O_{4}$?	are (B) 80. 0 g (E) 201. g (C) 134.4 g
(A) 12.4 L (D) 89.6 L	
(B) 22.4 L (E) 202 L	62 Equal masses of H (a) and O (a) are placed
(C) 40.3 L	in a container and the container is tightly sealed. Which is true?
50 WH (114) 1 (1 1 1	(A) Both gases exert the same pressure on the walls of the container.
$_{2}$ = 59. What would the volume ratio in which combines with O_2 to form water?	(B) There are more hydrogen molecules than oxygen molecules in the container.
$2 \text{ H}_2 + \text{O}_2 \rightarrow 2 \text{ H}_2\text{O}$	 (C) Both the H₂(g) and O₂(g) molecules have the same velocity in the container. (D) D at the H₂(g) and O₂(g) molecules have the same velocity in the container.
(A)1:8 (D)2:1	(D) Both the $H_2(g)$ and $O_2(g)$ molecules strike
(B) 1:2 (E) 4:1	force.
(C) 1:1	(E) The oxygen is at a greater pressure than the
	hydrogen.
 _60. A 71–gram sample of Cl₂ contains approximately the same number of molecu (A) 1.0 g of H₂ (D) 36 g of H₂O (B) 32 g of O₂ (E) 2 g of He (C) 40 g of Ne 	ules as $ \begin{array}{ c c c c c } \hline & -63. & \text{How many moles of boron oxide, } B_2O_3, \text{ are required to produce } 6.00 \text{ moles } B_4C? \\ & 2 B_2O_3(s) + 7 C(s) \rightarrow B_4C(s) + 6 CO(g) \\ \hline & (A) 6.00 & (D) 4.00 \\ \hline & (B) 12.0 & (E) 15.0 \\ \hline & (C) 3.00 \\ \hline \hline & -64. & A \text{ compound is found to contain } 80.0\% \\ \hline & \text{carbon and } 20.0\% \text{ hydrogen by mass. The empirical formula of the compound is} \\ \hline & (A) CH & (D) CH_4 \\ \hline & (B) CH_2 & (E) C_2H_6 \\ \hline & \end{array} $

65. The molar mass of molecular hydrogen is	69. What is the minimum volume in mL of 0.50		
(A)1.0 (D)44.8	M AgNO ₃ that is required to react <i>completely</i>		
(B) 2.0 (E) 760	with 40.0 mL of 0.50 M K_2 CrO ₄ to make solid		
(C) 22.4	Ag_2CrO_4 ?		
	$2 \operatorname{Ag}^{+}(aq) + \operatorname{CrO}_{4}^{2-}(aq) \rightarrow \operatorname{Ag}_{2}\operatorname{CrO}_{4}(s)$		
66. The molecular formula of a compound is	(A) 10.0 mL (D) 60.0 mL		
known to be C_4H_{10} . Which is its empirical	(B) 20.0 mL (E) 80.0 mL		
formula?	(C) 40.0 mL		
(A)CH ₂ (D)C ₄ H ₁₀			
(B) CH ₂₅ (E) $C_{40}H_{100}$			
$(C)C_2H_5$	70, 70 a of $CO(x)$ results completely with 40 a		
2 0	$1 - \frac{1}{2}$ 0 , $7 - \frac{1}{2}$		
	statement is an illustration of the		
(7. Consider the encodier	Sutchieft is an indistation of the		
67. Consider the equation	I. Law of Multiple Proportions.		
$MnO_2 + 4 HCl(aq) \rightarrow MnCl_2 + 2 H_2O + Cl_2$	II. Law of Constant Composition.III. Law of Conservation of Mass.		
2(g)			
	IV. Law of Combining Gas volumes.		
How many moles of HCl are necessary to	(A) I and III (D) II and IV		
produce two molar volumes of Cl ₂ (g)?	(B) I and IV (E) III and IV		
$(A)\underline{1}$	(C) II and III		
2 (D) 2			
(B) 2 (C) 2 5			
(D)4	71. The mass of one molecule of acetylene, C		
(E) 8	$_{2}H_{2}$ (MM = 26.0) is:		
	(A) 4.32×10^{-23} g (D) 26.0 g		
	(B) 2.3×10^{22} g (E) 156 g		
	(C) 4.32 g		
68. In an experiment, 0.0032 mole of maleic			
acid, $C_4H_4O_4$, reacts completely with 0.0064			
halanced equation describes this reaction?	72 How many moles of atoms are in 1.0 mole of		
(A) C H O + N2OH \rightarrow N2C H O + H O	$Fe_2(Fe(CN)_c)_2$?		
(B) 2 C H O + NaOH > 2 Na C H O + 2 H	(A)16 (D)29		
$(D) 2 C_4 H_4 O_4 + H_4 O_1 \rightarrow 2 H_2 C_4 H_2 O_4 + 2 $	(B) 17 (E) 39		
$(C) C_4 H_4 O_4 + 3 \text{ NaOH} \rightarrow \text{Na}_2 C_4 H O_4 + 3 H_2 O_4$	(C) 26		
$(D)C_4H_4O_4 + 4 \text{ NaOH} \rightarrow \text{Na}_4C_4O_4 + 4 \text{ H}_2O_4$			
$(E) C_4 H_4 O_4 + 2 \text{ NaOH} \rightarrow \text{Na}_2 C_4 H_2 O_4 + 2 H_2 O_4$			
() 4 4 4 4 · · · · · · · · · · · · · · ·			

73. How many liters of $H_2(g)$ measured at 760 mmHg and 273 K react with 11.2 L of $N_2(g)$ measured at 760 mmHg and 273 K?		77. Hydrogen gas reacts with hot copper (II) oxide.		
		CuO (s) +	$H_2(g) \rightarrow Cu(s) + H_2O(g)$	
$N_2(g)$	$+ 3 \operatorname{H}_2(g) \rightarrow 2 \operatorname{NH}_3(g)$	How many moles	of water is formed when 150	
(A) 16.8 (B) 22.4	(D)44.8 (E) 67.2	g of CuO (MM = 79.5) is completely reduced to copper?		
(C) 33.6		(A) 1.00	(D)4.00	
		(B) 2.00 (C) 1.50	(E) 1.59	
74. A compound h $_{2}O$ and the molar r What is its molecu (A) CH ₈ O ₁₀ (B) C ₆ H ₁₂ O ₆ (C) C ₆ H ₁₂ O ₁₂	has the empirical formula CH mass 180 grams per mole. alar formula? (D) $C_{12}H_4O_2$ (E) $C_{12}H_{24}O_{12}$	 78. 1.70 g of NH (A) 0.224 L (B) 1.70 L (C) 2.24 L 	3(g) at STP occupies (D) 17.0 L (E) 22.4 L	
75. A 100.0 g sample of a compound is composed of 26.5 g of potassium, 35.4 g of chromium and 38.1 g oxygen. The empirical formula of the compound is (A) KCrO ₄ (D) $K_2Cr_2O_8$ (B) KCr ₂ O ₇ (E) $K_{26}Cr_{35}O_{38}$ (C) $K_2Cr_2O_7$		79. An empty flask (vacuum) has a mass of 110.02 g. Filled with $O_2(g)$ the flask has a mass of 110.66 g. Filled with an unknown gas the flask has a mass of 110.38 g. All massing is done at the same temperature and pressure. What is a possible formula for the unknown gas? (A) H ₂ O (D) He ₂ (B) H ₂ (E) SO ₂ (C) He		
76. The mass of A atoms is	vogadro's number of copper			
(A) 1.00 g (B) 29.0 g	(D) 6.02×10^{23} g (E) $63.5 \times 6.02 \times 10^{23}$ g	80. The mass of 1 4.82 g. The molar (A)0.215 g	1.00 L of an ideal gas at STP is r mass of the gas is (D) 54.0 g	
(C) 63.5 g		(B) 4.68 g (C) 4.82 g	(E) 108 g	

Answer Key [New Exam]

1. <u> </u>	26. <u>C</u>	51. <u>E</u>	76. <u>C</u>
2. <u> </u>	27. <u>D</u>	52. <u>C</u>	77. <u>B</u>
3. <u>A</u>	28. <u>C</u>	53. <u>C</u>	78. <u>C</u>
4. <u>B</u>	29. <u>B</u>	54. <u>D</u>	79. <u>A</u>
5. <u>A</u>	30. <u> </u>	55. <u>A</u>	80. <u>E</u>
6. <u>D</u>	31. <u>A</u>	56. <u> </u>	
7. <u>A</u>	32. <u>D</u>	57. <u>D</u>	
8. <u>C</u>	33. <u>C</u>	58. <u> </u>	
9. <u>A</u>	34. <u>B</u>	59. <u>D</u>	
10. <u>C</u>	35. <u>A</u>	60. <u>B</u>	
11. <u>A</u>	36. <u>A</u>	61. <u>B</u>	
12. <u>B</u>	37. <u>E</u>	62. <u>B</u>	
13. <u>B</u>	38. <u>E</u>	63. <u>B</u>	
14. <u>C</u>	39. <u>B</u>	64. <u>C</u>	
15. <u>C</u>	40. <u>B</u>	65. <u>B</u>	
16. <u>D</u>	41. <u>D</u>	66. <u> </u>	
17. <u>D</u>	42. <u>E</u>	67. <u> </u>	
18. <u>C</u>	43. <u>A</u>	68. <u>E</u>	
19. <u>D</u>	44. <u>D</u>	69. <u>E</u>	
20. <u>D</u>	45. <u>B</u>	70. <u>A</u>	
21. <u>B</u>	46. <u>B</u>	71. <u>A</u>	
22. <u>A</u>	47. <u>C</u>	72. <u>D</u>	
23. <u>C</u>	48. <u>C</u>	73. <u>C</u>	
24. <u>C</u>	49. <u>C</u>	74. <u>B</u>	
25. <u>C</u>	50. <u>C</u>	75. <u>C</u>	